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“The most important factor determining living standards is productivity growth ... Federal

Reserve actions to strengthen the recovery may not only help bring our economy back to its

productive potential, but it may also support the growth of productivity and living standards

over the longer run.” – Janet Yellen

1 Introduction

Is money neutral in the long run? It is a near-universal feature of modern macroeconomic models

that monetary policy only affects real outcomes in the short run rendering the central bank inca-

pable of influencing productivity. Nevertheless, recent work has begun to question this assumption:

Moran and Queralto (2018) and Jordà, Singh, and Taylor (2020) challenge the notion of long-term

monetary neutrality and speculate about the potential causes of a lasting impact of monetary policy

shocks on productivity.

In the context of examining the productivity effects of monetary policy, it’s crucial to explore

how these policies influence innovation. However, we know little about how firms innovate in re-

sponse to monetary policy changes due to the lack of detailed data on firms’ innovation measures.

My main innovation is to break through this data logjam by constructing firm-level innovation mea-

sures based on their patent applications. Utilizing these metrics, I present novel evidence against

the notion of long-term monetary neutrality. I also identify a key factor that can explain this ob-

servation: endogenous innovation decisions on the part of firms. My findings lend support to Janet

Yellen’s hypothesis that the impact of monetary policy extends beyond short-term stabilization

goals and can foster long-term productivity growth.1

A substantial body of recent literature (Kogan et al., 2017; Bluwstein, Hacioglu Hoke, and

Miranda-Agrippino, 2020; Cascaldi-Garcia and Vukotić, 2022) has demonstrated a causal link

between patent applications and productivity. This suggests that patent applications can serve as

a reliable proxy for gauging success in generating knowledge capital, rendering them an ideal

measure for achieving the objectives of this study. I use comprehensive patent history data, along

with monetary policy shock data, to investigate two research questions. First, does monetary policy

affect innovation? And, if so, which firms’ innovate in response to monetary policy shocks?

I first provide aggregate empirical evidence using local projections (see Jordà (2005)). From the

aggregate point of view, I reevaluate earlier findings that suggest that expansionary monetary policy

shocks lead to an increase in long-term Total Factor Productivity (TFP). Following a one standard
1Recent examples of research supporting this idea include studies by Benigno and Fornaro (2018); Fornaro and Wolf (2020);

Garga and Singh (2021); Galı́ (2022); Acharya et al. (2022).
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deviation expansionary monetary policy shock, TFP grows by 2% over the course of 28 quarters.2

Then, I offer evidence indicating that this shock gradually and ultimately spurs innovation at the

aggregate level, as evidenced by a 1.5% rise in the accumulation of knowledge capital measured

through new patent applications.3 The delayed response of innovation suggests that the post-

shock innovation primarily stems from inventing new technologies, rather than patenting existing

technologies. Unconditionally, changes in intangible capital generally precede innovations, with

a lead time of 2 years, and this timing delay is consistent with what I observe in the conditional

impulse responses.

These findings lead to the following question: Why does innovation experience an upswing

following expansionary monetary policy shocks? I demonstrate that the economic value of patents

increases following a decline in interest rates. I gauge the economic value of each patent using

the methodology proposed by Kogan et al. (2017). The mechanism that underlies the aggregated

innovation responses to monetary policy shocks is relatively straightforward. Innovations do not

necessarily translate to immediate profits upon creation; instead, they yield higher returns in the

future. An unexpected reduction in the interest rate augments the value of patents, thereby promot-

ing aggregate innovation. My results reveal a substantial effect of expansionary shocks on patent

value; a one standard deviation expansionary shock leads to a remarkable 15% increase in patent

value. Previous studies reliant on theoretical models, such as Moran and Queralto (2018), indicate

that expansionary monetary policy shocks enhance the value of new technology, albeit to a lesser

extent.4

Furthermore, I demonstrate that an expansionary monetary policy can lead to the misallocation

of capital. This happens because it reduces the costs associated with investing in intangible as-

sets, encouraging companies to invest in technology that might not have been pursued under less

favorable conditions. This is evident in the form of a decline in the scientific quality of their work

following the policy shock. Additionally, the decrease in the scientific quality of patents implies

that the increase in the average economic value of patents can be attributed to a decrease in the dis-

count rate and the economic upswing resulting from expansionary monetary policy shocks. Both

of these factors can impact fluctuations in the market value of new patents by enhancing profits de-

rived from patenting innovative technology. Moreover, I find that as innovation increases with the

introduction of new patents, the economic value of patents eventually stabilizes. The temporarily

elevated returns on innovation lead to a lasting advancement in technological capabilities, which

explains the positive long-term TFP response to an expansionary monetary policy shock.
2A one standard deviation monetary policy shock raises the effective federal fund rate by 8 basis points.
3Subsequent to my paper, Ma and Zimmermann (2023) also look at the effects of monetary policy and confirm my result that

monetary policy actions lead to changes in patents and innovation that have long-lived effects on productivity in the U.S.
4Moran and Queralto (2018) reports that a 60 basis point expansionary monetary policy shock results in only around a 1%

increase in the value of innovation.
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It appears that these shocks have had a significant impact on cyclical variations in innovation

over the sample period. While the contribution of monetary policy shocks to innovation is almost

negligible in short-term forecast error variance decompositions, an analysis of longer time horizons

reveals that monetary policy shocks can account for 12 percent of the forecast error variance.

Motivated by the aggregate evidence, I perform a firm-level analysis to clarify the mechanism

behind the impact of monetary policy shocks on innovation. I provide cross-sectional evidence on

heterogeneous innovation responses using the data on firms’ patent stocks, constructed based on

detailed information on patents. To precisely estimate the effects of monetary policy shocks de-

pending on firms’ characteristics, I control for various firm-specific variables that have previously

been identified as significant factors in explaining heterogeneity in the responses to monetary pol-

icy shocks. I find that characteristics such as firm size, age, leverage, and liquidity determine

the magnitude of the impact of monetary policy shocks on innovation. Among these attributes, I

identify liquidity as a pivotal factor in comprehending this heterogeneity; a one standard deviation

increase in liquidity corresponds to a 0.6 percentage point greater increase in innovation follow-

ing a one standard deviation expansionary monetary policy shock. My estimates are statistically

significant and economically sizable, with variations across firms persisting even seven years after

the initial shock.

Empirical evidence suggests that the primary reason why firms with ample liquidity exhibit

the most pronounced response to the shock is not due to their patents experiencing greater value

appreciation or their reliance on external borrowing. Instead, it appears that cash reserves play a

key role in financing investment in intangible capital. Financial constraints are widely recognized

as significant drivers of fluctuations in tangible capital investments (Ottonello and Winberry, 2020;

Howes, 2021) and internal financing from previous cash flows is considered an alternative to ex-

ternal borrowing. However, there is reason to believe that liquidity is of even greater importance

for intangible capital. This is because ‘asymmetric-information’ is likely to elevate the financing

costs from external sources (Hall, 2010), and intangible capital lacks collateral value (Falato et al.,

2020). In this study, I analyze firms’ borrowing data and uncover that there is no variation in firms’

borrowing patterns based on the level of liquidity following monetary policy shocks. Nonetheless,

when considering adjustment costs, liquidity’s significance diminishes for the low capital adjust-

ment costs group, but it remains a crucial factor for the high adjustment costs group. This suggests

that companies with ample liquidity can offset their adjustment costs using their cash reserves,

which reduces their cost of financing.

Related Literature This paper contributes to several strands of the literature. First, this pa-

per relates to the empirical literature studying the role of firms’ heterogeneity in the transmission

mechanism of monetary policy shocks. This includes recent papers by Cloyne et al. (2018); Jeenas
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(2019); Crouzet and Mehrotra (2020); Ottonello and Winberry (2020); Howes (2021) as well as

earlier papers such as Gertler and Gilchrist (1994); Kashyap, Lamont, and Stein (1994). Substan-

tial work has explored how heterogeneity across firms shapes the impulse response of tangible

investment after a monetary policy shock. Such work has emphasized that a number of variables,

such as size (Gertler and Gilchrist, 1994), age (Cloyne et al., 2018), liquidity (Jeenas, 2019), and

leverage (Ottonello and Winberry, 2020), determine the heterogeneity in responses of tangible

capitals. On the other hand, few papers have explored the heterogeneous effect of conventional

monetary policy on innovation (see Morlacco and Zeke (2021); Döttling and Ratnovski (2021)).

However, these papers study the effects on less precise measures of intangible capital innovation,

such as “Selling, General and Administrative Expenses,” which contain components that appear to

be weakly related to productivity at best. This paper contributes to the literature on the heterogene-

ity of monetary policy responses by uncovering the role of firm liquidity in innovation behavior

after such shocks.

Second, this paper is part of a growing literature on the productivity effects of monetary policy.

Prominent examples include Evans and dos Santos (2002); Christiano, Eichenbaum, and Evans

(2005); Comin and Gertler (2006); Moran and Queralto (2018); Jordà, Singh, and Taylor (2020);

Meier and Reinelt (2020); Garga and Singh (2021), where most work focuses on the effect of

monetary policy shocks on productivity, but not on the underlying mechanism. From the aggregate

analysis, I confirm that expansionary monetary policy shocks increase TFP. In this respect, this

paper is consistent with previous works on aggregates. However, previous works mostly base their

explanation on fixed costs (Christiano, Eichenbaum, and Evans, 2005), mark-up dispersion (Meier

and Reinelt, 2020), and R & D (Moran and Queralto, 2018; Garga and Singh, 2021). I use a

measure of innovation that, while widely used in the literature on innovation, is new to the field

of monetary policy. This measure of innovation can explain the productivity effect of monetary

policy shocks and provides a new finding that monetary policy shocks have a large impact on the

value of innovation. Moreover, the new measure in this paper can be linked to detailed firm-level

data, which allows me to study the underlying mechanism. While Meier and Reinelt (2020) study

the productivity effect in the short run, I am not aware of any work that studies the productivity

effect beyond the short run.

Roadmap The rest of the paper is organized as follows. Section 2 discusses the source of my

data and how I construct each variable, including monetary policy shocks, financial variables, and

innovation measures based on patent applications. Section 3 presents my main results based on

aggregate data, while Sections 4 and 5 present my results based on firm-level data.
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2 Data

My paper has two goals. First, I want to estimate the influence of an expansionary monetary shock

on overall innovation. Second, this study highlights the significance of liquidity in how mone-

tary policy shocks affect innovation. To address these inquiries, I have constructed an innovation

measure using patent data.

I constructed the innovation variable for firms using information extracted from patent appli-

cations. While acknowledging that patents may not capture all forms of innovation, given the

existence of non-patented inventions, they remain a valuable data source for studying innovation

due to their inherent association with significant technological advancements. Previous research

focusing on the relationship between innovation and monetary policy frequently employs R&D as

a measure of innovation. Given the objectives of this paper, several compelling reasons emphasize

why a firm’s patent applications present an optimal measure of innovation instead of R&D.

Patent data stands out as a relatively dependable source, circumventing the measurement chal-

lenges that often hinder the utilization of firm-level R&D data. For instance, employing indicators

such as intangible capital (intanq) or R&D variables (xrdq) from Compustat could be problematic,

as they might not faithfully capture firms’ innovation endeavors. Over 70% of observations exhibit

missing values for R&D variables across the sample period. Addressing this issue of missing val-

ues holds paramount importance within the context of this study. Traditional practice treats missing

values as zeros, assuming that they signify a lack of innovation activity. Nonetheless, this heuristic

approach lacks a micro-founded basis and fails to ensure that the resulting innovation measures

are accurate.5 In addition, Koh and Reeb (2015) emphasize that firms with missing R&D records

contribute 14 times more granted patents compared to firms with a recorded R&D of zero. This

observation implies that a lack of R&D data does not necessarily equate to a dearth of innovation

efforts. Instead, due to the discretionary nature of how expenses are categorized as R&D, managers

may opt to not disclose certain expenditures in their financial reports.

Additionally, patents hold a stronger potential for delineating productivity growth than other

available measures, since they can serve as a tangible indicator of a firm’s innovation activities.

This explains why firms’ patent applications have been widely embraced as a proxy for successful

knowledge capital creation. Furthermore, established causal relationships between a firm’s pro-

ductivity and its patents substantiate the notion that knowledge capital—rather than R&D, an input

for innovation—plays a pivotal role in determining productivity.
5Peters and Taylor (2017) offers valuable insights for constructing a comprehensive gauge of intangible capital using Compu-

stat. However, this approach also assumes zero R&D for missing values.
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2.1 Patent Dataset

Patent dataset is sourced from the U.S. Patent and Trademark Office (USPTO), which maintains

records of U.S. patent documents. The USPTO dataset has universal coverage, limiting measure-

ment error. The dataset offers comprehensive details about a patent, including information about

the inventor, description, filing date, granted date, and similar aspects. However, a complication

arises from the dataset’s distinctive firm identifier, posing a challenge to merging it with Compus-

tat data. To address this, I employ crosswalk files from Bena et al. (2017) and Dorn et al. (2020)

to enhance data alignment. The USPTO dataset has limited information on patents granted before

1975. To address this, I supplement it with a derived patent dataset from Kogan et al. (2017), which

provides more comprehensive pre-1975 data.6

2.2 Innovation Metric

With the patent dataset, few methods have been employed to study innovation decisions or their

impact. The prevalent approach in the literature is to treat investments as stock variables (Hall,

Jaffe, and Trajtenberg, 2005; Lucking, Bloom, and Van Reenen, 2019). Accordingly, I treat patent

stocks as my main measure of innovation. I compute each firm’s patent stock by considering a

quarterly depreciation rate of 4%.7 Furthermore, prior research has indicated that the quantity of

patents may not accurately reflect the extent of a firm’s innovativeness. In simpler terms, the basic

metric may not reflect the quality of innovation. Hence, I incorporate an additional metric, citation-

weighted patents, following the outline provided by Hall, Jaffe, and Trajtenberg (2005) to evaluate

the quality of patents based on the number of forward citations they receive. This metric captures

the scientific importance of each patent. Scaling is often used to adjust for citation truncation lags

as newer patents have had less time to accumulate references. For example, Kogan et al. (2017)

construct citation-weighted patents by a given firm f at time t as,

Θ
cw
f ,t = ∑

j∈Pf ,t

(
1+

C j

C̄ j

)
, (1)

where Pf ,t denotes the set of patents issued to firm f at time t and C̄ j is the average number of

forward citations received by the patents that were granted in the same year as patent j.

However, since my research centers on investigating how monetary policy influences innova-

tion, this approach could pose a challenge if monetary policy leads to an increase in the number

of patent filings, which would likely result in more citations. In such a scenario, the metric may
6As an alternative, I reanalyzed the study using patent stock information only from after 1975Q1, revealing no substantial shifts

in the primary findings.
7Li and Hall (2020) establish industry-specific R&D depreciation rates, although this data pertains only to major U.S. high-tech

industries. Here, I adopt the conventional assumption of an annual depreciation rate of 15%, equivalent to 4% per quarter.
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not effectively capture the true quality of patents. Consequently, I adopted a different approach

outlined by Akcigit et al. (2018) to create a citation-weighted innovation metric.8 This metric

considers the citations accumulated by a particular patent within a three-year period following

its priority date, addressing the issue of citation truncation. The primary indicator of knowledge

investment becomes the count of citations received by the patent,

Θ
cw
f ,t = ∑

j∈Pf ,t

(
1+

t+2

∑
τ=t

C j,τ

)
, (2)

where C j,τ denotes the number of citation that patent j receives at time τ . Using this method min-

imizes the possibility of monetary policy affecting patent applications within a three-year time-

frame, ensuring that the number of citations remains unaffected by monetary policy shocks. As a

robustness check, I also consider a different window.

Once the innovation measure is constructed, my focus centers on the timeframe spanning from

1988Q1 to 2011Q4 for the primary analysis.9 In 1994, the U.S. president endorsed the General

Agreement on Tariffs and Trade (GATT), which triggered significant alterations to U.S. patent

law starting in 1996. These changes, essential for all patent system participants, encompass ad-

justments to patent protection durations and the establishment of a domestic priority document,

namely the provisional application. I create a time series depicting innovation efforts to assess

how this legislation impacted firms’ innovation activities. Figure 1 presents the outcomes: the left

panel illustrates the evolving proportion of firms initiating new patent applications, while the right

panel charts each firm’s mean patent count, contingent upon having at least one patent within a

specific period. There was a surge in patent applications in 1995, just prior to the law’s implemen-

tation. Consequently, including data prior to 1995 could conflate the influence of GATT with that

of monetary policy shocks, posing a concern. To prevent any potential structural shifts stemming

from the implementation of GATT, I limit the sample not to estimate the effect between the period

before GATT and after.10

Additionally, I confine the sample until 2011 to establish a comprehensive patent dataset. I

assume that the date of patent application, rather than the date of patent granting, represents the

inception of new technology—a practice commonly adopted in prior research to handle patent data.

However, the patent information available from the USPTO pertains solely to granted patents.11

8In the citation model presented in Akcigit et al. (2018), they utilize only the summation of C j,τ from τ = t to τ = t + 2.
However, in this study, I introduce an additional factor of 1 to account for the patent itself, aligning it with the approach adopted in
Hall, Jaffe, and Trajtenberg (2005).

9The sample includes monetary policy shocks until 2007Q4
10As a robustness check, I exclude the period before 1995Q2, and this adjustment does not alter the fundamental findings.
11In this paper, I only use patents granted to construct innovation metric of individual firm. USPTO also provides information

of pre-grant applications. However, since the dataset starts from 2001, it is hard to construct comprehensive firm-level innovation
measures including patents yet to be granted.
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Figure 1: Overview of aggregate patent applications
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Notes: This figure plots the time series of overall patent applications from 1990Q1 to 2011Q4. The left panel shows the share of
firms that filed patents in a given quarter. The right panel shows the average number of patent applications for a single firm.

This implies that patents not yet granted are absent from the dataset, irrespective of their filing date.

Consequently, technological advancements already made but not yet patented are not reflected

in my innovation measure. Therefore, utilizing the entire dataset without any limitations would

introduce inaccuracies into the innovation measure. This issue is exacerbated if a considerable

duration is needed for new technology to secure USPTO patents.

Figure 2 depicts the distribution of time gaps between the dates of patent application and

the dates when they were granted. Consistent with results documented in the literature (Hegde,

Herkenhoff, and Zhu, 2023), on average, the time span between application and grant is approx-

imately three years, although it can extend further in some cases. About 99.9% of the sample

corresponds to gaps of roughly eleven years. This suggests that patents applied for prior to 2011

should be encompassed in the recently published dataset. By imposing a sample limitation until

2011, I am able to compile a thorough firm-level innovation dataset. As a robustness check, I relax

this condition and use more observations, which doesn’t change my main results.

2.2.1 Value of patent

This paper also underscores how the price of patent responds to expansionary monetary policy

shocks. The dataset from Kogan et al. (2017) is valuable in assessing the economic significance of

each patent, as they establish the real value of each patent in dollar terms. To evaluate patent eco-

nomic worth, they propose an innovative approach employing stock price reactions to patent grant
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Figure 2: Time gap between the patent application date and the date granted
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Notes: This figure plots the histogram of the time gap between the date when firms file a patent application and the date when the
patent is granted. Patent data is sourced from U.S. Patent and Trademark Office (USPTO). The sample period is from 1926 to 2021.

announcements. The USPTO releases patents on Tuesdays and publishes the Official Gazette,

detailing newly granted patents along with technical descriptions. This information influences

the market, signifying the initial success of an application. Starting on Tuesday (the official an-

nouncement day), they gauge total market capitalization changes until Thursday (a 3-day window).

After adjusting for aggregate market movements and idiosyncratic stock return volatility, this se-

ries offers insight into the economic value of innovation for shareholders. I have summarized their

methodology for deriving patent values in Appendix B.

2.2.2 Characteristics of Innovation Metric

Table 1 shows the descriptive statistics on the unbalanced panel from my final dataset. This is

taken from an underlying firm level panel which remains after matching the balance sheet data and

innovation data. Innovation metrics are constructed based on the perpetual inventory method using

the number of patents and citations. While I mainly use the economic value of patents to gauge

the effect of monetary policy shocks on the price of new technology, I also construct innovation

metric based on economic values of patents as a robustness check.12 The patenting count is highly

skewed and the innovation metrics are correlated with each other.
12The dataset from Kogan et al. (2017) only includes patent information for firms with stock market information. As a result,

the sample I use in my primary analysis, which investigates the impact of monetary policy on firms’ innovation based on patent
counts, covers a broader range of patent data. Nevertheless, the findings in this paper remain consistent even when utilizing the
dataset from Kogan et al. (2017).
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Table 1: Summary statistics of innovation metrics

A. Distribution

Input Output (Patent)

R&D Number of patents 3-years citations Economic values

Mean 277.7 40.4 134.5 559.2
Median 20.0 1.3 3.0 0.0
Standard deviation 1683.5 357.0 1310.7 6738.2

Observations 543,732

B. Correlation

R&D Number of patents 3-years citations Economic values

R&D 1.00

Number of patents 0.69 1.00
(0.00)

3-years citations 0.68 0.95 1.00
(0.00) (0.00)

Economic values 0.83 0.64 0.65 1.00
(0.00) (0.00) (0.00)

Notes: Summary statistics of innovation metrics in the data. All output variables are considered as stock variables, calculated
using the perpetual inventory method with a quarterly depreciation rate of 4%. R&D is sourced from the NIPA Tables, measured
in millions of dollars, and adjusted for inflation using the 1982-based deflator. The count of patents is determined by the number
of patent applications. The calculation of 3-year citations is based on Equation 2. Economic values of innovation is sourced from
Kogan et al. (2017), measured in millions of dollars, and adjusted for inflation using the 1982-based deflator.

2.3 Other data

To uncover the fundamental channels through which monetary policy affects innovation, I integrate

multiple additional datasets that provide evidence from various perspectives.

2.3.1 Monetary policy shocks

To study the effect of monetary policy on innovation, it is essential to identify exogenous changes

in monetary policy. A time series of exogenous monetary policy shocks ensures that the find-

ings in this paper are driven by an unexpected change in the monetary policy but not by other

macroeconomic factors. The essence of identifying the monetary policy shock lies in distinguish-

ing unanticipated and exogenous changes in the policy rate driven by changes in macroeconomic

conditions. Since Kuttner (2001), many attempts have been made using the change in the federal

fund future to construct monetary policy surprises. In this paper, I use surprises from Bauer and
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Swanson (2022) as a measure of monetary policy shocks. With a sample period that runs from

1988Q1 to 2007Q4, the series has an average -1 basis point change, with a standard deviation of

8 basis points at the quarterly level.13 Additionally, I use shock series from Gertler and Karadi

(2015), Gorodnichenko and Weber (2016), and Barakchian and Crowe (2013). Table 2 provides

basic summary statistics of monetary policy shocks that I use in the final data sets.

Table 2: Summary statistics of monetary policy shock

Bauer and Swanson Gorodnichenko and Weber Gertler and Karadi Barakchian and Crowe

Mean -0.008 -0.045 -0.045 -0.139
Median -0.003 -0.013 -0.009 0.164
Standard deviation 0.076 0.103 0.110 1.249
Min -0.239 -0.428 -0.546 -5.159
Max 0.195 0.237 0.170 2.934

Observations 80 72 72 77

Notes: Summary statistics of monetary policy shock used in the analysis. The sample period starts from 1988Q1 and 2007Q4.

2.3.2 Balance sheet data

To construct firm-level data, I use the Compustat and the WorldScope Database at the Wharton

Research Data service (WRDS).14 Both sources provide detailed balance sheet information for

publicly listed U.S. incorporated firms covering the period from 1988Q1 to 2011Q4.

Utilizing balance sheet data from WRDS offers several advantages, primarily its ability to pro-

vide insights into various firm attributes on a quarterly basis. This high-frequency characteristic is

especially advantageous for estimating the effect of monetary policy shocks on firms’ decisions.

The comprehensive data on firms’ financial standings allows me to disentangle the influence of

liquidity from other observable features of these firms. In the main specification, I exercise control

over all variables previously established in existing literature to determine responses in tangible

capital following monetary shocks. This measure minimizes the potential for errors stemming

from confounding factors. These control variables include age, dividends, earnings before inter-

est, taxes, depreciation, amortization (EBITDA), leverage, liquidity, long-term debt dependence,

price-to-cost margin, net receivables to sales, real capital stock, real sales growth, size, and Tobin’s

q. Appendix B provides an overview of control variables and how they are constructed. This com-

prehensive control allows for a precise examination of the transmission mechanism of monetary
13As a starting point, I take the period prior to the Great Recession as a reference. However, to increase the sample size, I take

two additional steps. First, I incorporate data from the period following the Great Recession, which doesn’t significantly alter my
estimates. Second, I convert the dataset into a monthly format, allowing for a larger number of observations and a more detailed
examination of how overall innovation responds to shocks. Among all the aggregate variables, it’s worth noting that only patent
filings can be constructed at the monthly level. Importantly, the primary result remains unchanged.

14The WorldScope Database is used to construct firms’ age in the firm-level analysis.
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policy on innovation, uncovering the primary drivers of heterogeneity in innovation responses con-

tingent upon monetary policy shocks. To mitigate the impact of outliers, each firm-level variable is

subjected to a 0.5% winsorization. Detailed information regarding the development of individual

firm-level variables is included in the Appendix B. However, it’s important to note that a limitation

arises from using Compustat’s balance sheet data, as it solely encompasses publicly listed U.S.

firms, thus excluding private enterprises absent from the stock market.

The final data set contains the financial variables discussed above and a stock of knowledge

capital measured with patents at a quarterly frequency. Firm data is for the period from 1988Q1 to

2011Q4, while the monetary policy shock is from 1988Q1 to 2007Q4, before the financial crisis.

Although I am focusing on the effect of conventional monetary policy shock on innovation, I extend

the firm-level data until 2011Q4, enabling me to accurately estimate the coefficient of interest over

the longer horizon.15 The sample only includes firms incorporated in the US and excludes firms in

the financial industry or utilities.

3 Aggregate Analysis

In this section, I conduct an aggregate analysis and emphasize the role of innovation in compre-

hending the enduring impact of monetary policy shocks on productivity. I present findings indi-

cating that an expansionary monetary policy shock leads to heightened patent values, increased

aggregate patent applications, and higher TFP. These observations suggest that innovation could

serve as a channel through which monetary policy shocks influence TFP outcomes, extending be-

yond immediate effects.

3.1 The Effects of Monetary Policy Shocks on Innovation

The main specification in this section is based on Jordà (2005) local projection,

log(yt+h)− log(yt−1) = ch +
J

∑
j=1

α
h
j
(
log(yt− j)− log(yt− j−1)

)
+

l

∑
i=0

β
h
i ε

m
t−i +Xt + ft+h|t−1, (3)

where h ≥ 0 denotes the horizon; yt is the variable of interest, and εm
t denotes the monetary policy

shock I discussed in Section 2. The coefficient of interest is β h
i for h = 0, ...,28, which measures

the effect of monetary policy εm
t at period t on the growth rate of the dependent variable between

t − 1 and t + h. For my main analysis, I include eight lags of the shocks and four lags of the

quarterly aggregate innovation growth rate. Xt is a vector with four lags of GDP growth, the
15I also verify the primary results using monetary policy shocks up to the fourth quarter of 2011, and this adjustment does not

alter the primary findings.
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inflation rate, and the unemployment rate, in line with previous research (Ottonello and Winberry,

2020). The standard errors are computed following the methodology in Driscoll and Kraay (1998),

which accommodates for varied serial and cross-sectional patterns across different time horizons.

For each impulse response, I used a 68% and a 90% confidence interval.

3.1.1 Results

The results are plotted in Figure 3. To facilitate interpretation, I made several adjustments. First, I

multiplied the dependent variable, denoted as (log(yt+h)− log(yt−1)), by 100. Second, I standard-

ized and normalized the sign of the monetary policy shock, εm
t , so that a positive value corresponds

to an expansionary monetary policy shock. One standard deviation of a monetary policy shock

equates to an 8 basis point change in the federal funds rate. The impulse response function dis-

played in Figure 3 illustrates how each macroeconomic variable reacts to a one standard deviation

expansionary monetary policy shock.

As a gauge for U.S. productivity, I rely on the quarterly, utilization-adjusted TFP series outlined

by Fernald (2014). The lower left panel of Figure 3 illustrates the computed impulse response of

TFP based on specification 3. Aggregate TFP displays growth and maintains its effect well beyond

the short-term. A one standard deviation expansionary monetary policy shock induces a 1.5% TFP

increase.16

To gauge the impact of expansionary monetary shocks on innovation, as measured by patent

applications, I construct a time-series dataset of the mean number of patents held by each firm

during a given period from the patent data.17 The upper left panel in Figure 3 depicts the response

of the aggregate patent stock. This stock exhibits gradual growth and peaks at approximately 1.5%

roughly six years after a one standard deviation expansionary monetary policy shock, and then

begins to decrease.18 This response becomes statistically significant two years after the shock.

This timing aligns with reason, since knowledge capital take longer to materialize than tangible

capital.
16Meier and Reinelt (2020) highlights that a one standard deviation contractionary shock reduces TFP by 0.5% three years after

the shock, where one standard deviation equals to 4 basis points.
17The analyzed sample encompasses firms listed in the Compustat data. To convert firm-level innovation metrics into aggregate-

level, I construct the stock of knowledge capital using the average quarterly growth rate of knowledge capital stock. I create the
knowledge capital stock by calculating the average quarterly growth rate of knowledge capital. Initially, I calculate the average
innovation metric across firms within the sample during the first quarter of 1988Q1, and then I utilize the average growth rate for
each subsequent quarter to generate the time-series data for innovation metrics. I assume that when a firm exits the market, its
associated technology vanishes. The resulting dataset is derived from patents listed in Compustat, with the omission of companies
that exit during the same period. As an alternative approach, I develop a version of the series that assumes patent depreciation even
after firms exit the market. However, this adjustment does not substantially alter the core outcomes—namely, the expansionary
shock leads to heightened aggregate innovation.

18While the dataset has a limited number of observations, it’s noteworthy that the cumulative impact of monetary policy shocks
on innovation, which stood at 1.5 percent at 24 quarters, exhibits a decrease to 1.2 percent at the 32-quarter mark, signifying a
decline in magnitude.
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Figure 3: Impulse responses of aggregate variables to an expansionary monetary policy shock

0 4 8 12 16 20 24 28

Quarter

-0.5

0

0.5

1

1.5

2

2.5

3

P
e

rc
e

n
t

Patent stock

0 4 8 12 16 20 24 28

Quarter

-10

-5

0

5

10

15

20

25

30

35

P
e

rc
e

n
t

Average economic value of patents

0 4 8 12 16 20 24 28

Quarter

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

P
e

rc
e

n
t

TFP

0 4 8 12 16 20 24 28

Quarter

0

0.5

1

1.5

2

2.5

3

P
e

rc
e

n
t

Intangible capital

Notes: This figure displays the impulse responses of aggregates to a negative, one standard deviation monetary policy shock using
specification 3. Quarterly TFP is from Fernald (2014), and monetary policy shock is from Bauer and Swanson (2022). The sample
period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is
restricted to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous lines
represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998)
to allow for arbitrary serial and cross-sectional across horizons and time.

To explore how the shock influences the responses of intangible investment, I utilize data from

the National Income and Product Accounts (NIPA) Tables, sourced from the U.S. Bureau of Eco-

nomic Analysis (BEA). Specifically, I focus exclusively on R&D to compose firms’ intangible

capital stock. The impulse response function for this newly constructed variable is depicted in

the lower right panel. Following a one standard deviation expansionary shock, intangible capital

increases by 1.5% after four years. The observed behaviors of patent stock and intangible capital

suggest that it takes approximately two years for investments to materialize. To further support this

argument, I illustrate the correlation between patent applications at time t and intangible capital

at time t − i, on an annual basis, where i = −3, ...,3. This is presented in Figure A.22. The chart

demonstrates that innovation during period t displays correlation with investment from the past

two years. This observation explains the temporal gap between the initiation of intangible capital’s
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response and the onset of the initial response seen in patent stock.

This paper aligns with existing literature by examining the mechanics behind the productivity

effects of monetary policy shocks. However, my focus extends to medium- and long-term effects.

To address medium-term productivity effects, I extend my analysis horizon to seven years. Addi-

tionally, I delve into the relationship between changes in patent stock and TFP, as detailed in the

Appendix A.3. Figure A.21 demonstrates that a 1 percentage point shift in the patent stock leads

to a 3% adjustment. This accentuates the notion that fluctuations in aggregate innovation could be

the primary driver of conditional productivity growth arising from monetary policy shocks.19

To justify this substantial and persistent impact on aggregate innovation, I offer a rationale

rooted in the appreciation of patent value following the shock, which in turn encourages firms

to invest in intangible capital. A common approach to gauging a patent’s importance is through

citation-weighted patents, reflecting the scientific contribution of a new invention. However, scien-

tific importance doesn’t always align with economic value, so employing the number of citations

to estimate the influence of a monetary shock on patent valuation might not be pertinent.

I address this issue by adopting the recently developed method by Kogan et al. (2017), which

evaluates patents based on market reactions to patent grant news. This approach facilitates the

creation of a time series illustrating the average economic value of newly granted patents within

each period. This measure can be interpreted as the market’s perception of the total potential

payoff for each patent at the time of its announcement, representing a firm’s perception of the

profitability tied to owning a new technology. As illustrated in the top right panel, the expansionary

monetary policy shock significantly bolsters the average patent value. About three years after the

shock, its estimated effect on the average patent value is approximately 15%. This estimated

impact surpasses those reported in previous literature. Moran and Queralto (2018), for instance,

outlines that a 60 basis point expansionary monetary policy shock can augment the value of new

technology by 2%, as per their theoretical model. This notable surge in patent value elucidates

why an expansionary monetary policy shock motivates firms to allocate more resources towards

intangible capital.

3.1.2 Robustness

I conduct various sensitivity tests to examine the robustness of main findings. I report detailed

results in Appendix A.2

First, I investigate whether the core findings were influenced by the choice of innovation metric.

My initial measure was based on the count of patents. I examine if the results remained consistent
19Comin and Gertler (2006) and Meier and Reinelt (2020) highlight the significant delay between an invention and its practical

implementation, typically spanning approximately five years. From Figure A.21, it is evident that patent filings result in an uptick
in TFP after a three-year interval.
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when using a citation-weighted metric derived from specification 1 or 2. I performed an additional

test to assess the null hypothesis that monetary policy shocks do not affect an innovation metric

based on economic value. The point estimates indicate that expansionary monetary policy shocks

lead to increased innovation, although the estimates are somewhat noisy. Nevertheless, the results

support the rejection of the null hypothesis of no response in innovation when analyzed collectively

across all time horizons (with p-values < 0.01).

As a second set of robustness checks, I check that my results held up when different control

variables other than innovation metrics are used. I started by considering different monetary policy

shocks. Apart from the surprises provided by Gertler and Karadi (2015), I also utilized shocks

constructed by Gorodnichenko and Weber (2016) and Barakchian and Crowe (2013). These alter-

native shocks produce qualitatively similar estimates. Furthermore, I explore the impact of altering

the lag length in the specification 3. Changing the number of lags for monetary policy shocks had

minimal qualitative impact on the results.

Finally, I check other possibility that might changes the sample. First, when constructing the

patent stock, I incorporated the assumption that patents continue to depreciate even after compa-

nies exit the market. This modification does not significantly change the fundamental findings,

which are that an expansionary shock results in increased overall innovation. In addition, I assess

the robustness of my results by examining changes in the sample period. I extend my analysis to

include shocks until the end of the sample period (2011Q4), which encompassed the Great Reces-

sion. Moreover, I exclude the period before GATT to ensure that structural change does not affect

my results.

3.2 Why does the average economic value of patents increase?

The evidence from Section 3.1 suggests that expansionary monetary policy shocks encourage firms

to invest more in knowledge capital by increasing the future value of technology. This section in-

vestigates the underlying channel through which monetary policy enhances the average economic

value of innovation. As mentioned earlier, the average economic value was calculated based on

fluctuations in the stock market. This implies that the average economic value reflects sharehold-

ers’ expectations. The price of a patent, which is the average economic value in this paper, will be

determined by the present value of all future dividends generated by the innovation,

Pt = Et

{
∞

∑
i=1

Dt+i

(1+ r)i

}
,

where Pt is the price of innovation at time t, Dt is the dividend from the innovation, and r is a real

interest rate. Specifically, Dt is the function of quality of innovation and aggregate demand,
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Dt = f (quality of innovation, aggregate demand),

This implies that there are three ways for the value of innovation to rise. First, if firms invent

new technology with better quality. Second, even if the technology is the same, the price may

rise if there is a cyclical upswing. Lastly, a shift in the discount rate after expansionary monetary

policy shocks can also be a source of fluctuation in the price of the new patent. To investigate

which forces drives the responses, I construct the average number of citation of each patent as I

discussed in Section 2 which would capture the quality of innovation (Akcigit et al., 2018). Fig-

ure 4 shows the impulse response of the average quality of patent conditional on monetary policy

shocks. The average quality of patents decreases and the effect persists. This pattern highlights two

important points about how innovation responds to monetary policy shocks. First, expansionary

monetary policy may misallocate resources, and aggregate innovation is driven by changes in the

number of technology rather than the quality of technology. Lowering interest rates could incen-

tivize low-productivity firms to invest more, resulting in increased resource allocation to them.20

Consequently, a low interest rate may lead to inefficient resource distribution among diverse firms.

This implies that the aggregate innovation response is driven by quantity rather than quality.

Second, given the substantial fluctuations in the average economic value of patents in response

to monetary policy shocks, it implies that the increase in the average economic value of innovation

resulting from expansionary monetary policy is not attributed to innovators creating higher-quality

technology. This confirms that the average economic value of patents rises due to changes in the

discount factor and cyclical upswing following expansionary monetary policy shocks.

3.3 How Important is the contribution of monetary policy shocks to Inno-
vation?

I’ve demonstrated that monetary policy shocks enhance the value of innovation. The next ques-

tion is whether this impact is economically substantial. In this section, my aim is to underscore

the importance of monetary policy shocks in comprehending variations in innovation. I quantify

the contribution of monetary policy shocks to innovation, employing the forecast error variance

decomposition (FEVD), which helps us determine the portion of innovation’s variability that can

be attributed to monetary policy shocks during a specific time period.

Within the framework of local projections, I follow the method proposed by Gorodnichenko

and Lee (2020). The procedure consists in two steps: first, I estimate forecast errors f̂t+h|t−1 for

a given time horizon h using specification 3. Next, I conduct a regression analysis using these

estimated forecast errors and the shocks that occurred between t and t +h, as follows:
20Hori (2020) shows this response after monetary policy shocks using a theoretical model.
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Figure 4: Impulse responses of the average quality of innovation to expansionary monetary policy shock
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Notes: This figure displays the impulse responses of the average scientific importance to a negative, one standard deviation monetary
policy shock using specification 3. The monetary policy shock is from Bauer and Swanson (2022) and the sample period spans from
1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid
estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence
intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998) to allow for arbitrary
serial and cross-sectional across horizons and time. The quality of patents is determined by the number of citations they receive
within three years after being filed.

f̂t+h|t−1 = αεm,0ε
m
t+h + · · ·+αεm,hε

m
t + ṽt+h|t−1,

The R2 of this regression measures the share of the forecast error variance explained by the shock at

horizon h. This approach offers a means to gauge the degree to which monetary policy shocks sig-

nificantly influence the dynamics of innovation. Figure 5 illustrates the estimates obtained through

variance decomposition. In the short term, monetary policy shocks make a relatively minor quan-

titative contribution to innovation. This is unsurprising as monetary policy is less likely to have an

immediate impact on innovation, typically accounting for less than 1% of the variation in innova-

tion until two years after the shock. However, monetary policy shocks become more significant

over time. Approximately 12% of the forecast error variance is attributed to monetary policy

shocks seven years after the initial shock. This outcome underscores the pivotal role that monetary

policy plays in explaining fluctuations in innovation within the United States.

In addition to FEVD method, I use, as a reference point, a comparison between the estimated

effect of a monetary policy shock on innovation and its effect on tangible capital in Figure A.23.

Four years after a one standard deviation expansionary monetary policy shock, tangible capital

increases by 3%. This observation suggests that the influence of the shock on innovation is sig-

nificant, since it is comparable in size to the responses observed in tangible investments, and this

effect seems to persist over time. Moreover, the average quarterly change of my innovation metric

is around 1.8%, which suggests that the effect of monetary policy shocks on innovation is econom-
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Figure 5: Contribution of monetary policy shocks to forecast error variance of innovation
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Notes: This figure displays how monetary policy shocks contribute to the error variance in forecasting the aggregate innovation
metric.

ically sizable.

4 Firm-level Analysis

I present evidence at the firm level to delve into the mechanism that drives the impact of monetary

policy shocks on firms’ innovation. To be specific, I focus on the significance of firm-specific

attributes in comprehending diverse responses to innovation. This will elucidate the key factors

that have a significant impact on the transmission of monetary policy to overall innovation.

4.1 Heterogeneous Innovation Responses

In this subsection, the main goal of my analysis is to see which firms are the most responsive to

monetary shocks. Aggregate evidence emphasizes the role of innovation in explaining the pro-

ductivity effect of monetary policy shocks. I now explore which firms are the most responsive in

innovation, which will clarify the underlying mechanism. I employ the local projection method

proposed by Jordà (2005) to regress the cumulative difference of firms’ innovation on the interac-

tion terms of firms’ characteristics determined in the period t − 1 before the shock and monetary

policy shock at time t.

The main measure of innovation is ∆ log(Innovationi,t), where Innovationi,t is the measure of

innovation based on firms’ patent applications. As a baseline innovation measure, I construct the

stock of patents with a quarterly depreciation rate of 4% following Hall, Jaffe, and Trajtenberg

(2005). Table 3 provides the summary statistics of the dependent variables used in my analysis.

In each quarter, approximately 23% of all firms file at least one patent, and approximately 52% of
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Table 3: Summary statistics of firm-level variables

∆1 log(Innovationsi,t) Countit 1(Countit > 0) 1(Counti > 0) Liquidity
Mean 0.001 2.04 0.213 0.519 0.166
Median 0.000 0.00 0.074
Standard deviation 0.520 19.73 0.207

Observations 567,760

Notes: Summary statistics of firm-level variables computed over all firm-quarters observations starting from 1988Q1 to 2011Q4.
∆1 log(Innovationi,t) is the quarterly change in the patent stock of firm i at time t. Liquidity is cash and short-term investments to
assets ratio. Liquidity is winsorized at a 99.9% cutoff.

firms have filed at least once throughout the sample period.21

This is the first paper to estimate the semi-elasticity of innovation with respect to monetary pol-

icy shocks depending on firms’ financial position. I incorporate all firm control variables previously

employed in prior research that examined heterogeneous responses of tangible capital investment

to monetary policy shocks into my regression analysis. I also include each interaction term be-

tween firm characteristics and monetary policy shocks within the same estimation equation. This

approach aims to prevent any omitted firm attributes from explaining the central outcomes. The

fundamental specification is

∆h log
(
Innovation j,t+h

)
= α j +αst +

(
Θ
′
h + ε

m
t Ω

′
h
)

Wjt−1 +u j,t+h, (4)

where h= 0,1, ...,28 denotes the quarters after the shock. The dependent variable, ∆hInnovation j,t+h,

is the h-period before cumulative growth of the innovation. α j denotes the firm j fixed effect, which

captures permanent differences across firms. αs,t is a sector s by quarter t fixed effect, and it cap-

tures the shocks that have an equal effect on the sector in a given quarter, so the results are not

driven by industry differences. These sector-quarter dummies are constructed at the SIC 1-digit

level. εm
t is the monetary policy shock. Wjt−1 is a vector of firm control variables. All the firm

controls are measured at the end of the quarter before the monetary policy shock hits. This guaran-

tees that firm characteristics used in the analysis are orthogonal to the shock. u j,t+h is a residual. I

use a vast number of controls, including age, dividends, EBITDA, leverage, liquidity, price-to-cost

margin, net receivables to sales, real capital stock, real sales growth, size, and Tobin’s Q. Every

firm-level variable is standardized, so its unit is the standard deviation of each variable. The main

coefficient of interest is Ωh, which is a vector. This term estimates how firms’ innovation changes

over time depending on their characteristics after monetary policy shocks.
21To address the issue that not all companies engage in patent filings, I examined whether my primary results are the same when

I only consider firms that filed at least one patent during the sample period. This restriction did not significantly alter my outcomes.
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To interpret the results easily, I make the same adjustments as in Section 3. A positive value of

an element in Ωh is interpreted as firms with a higher level of corresponding firm characteristics

will experience higher innovation growth after a one standard deviation expansionary shock. In

this paper, I mostly focus on liquidity because liquidity has a much stronger impact than any other

firm controls.

Figure 6: Heterogeneous response of innovation to monetary policy shocks
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using the
specification 4. The innovation metric is measured using the number of patent filings. The monetary policy shock is from Bauer
and Swanson (2022) and the sample period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends
only up to 2007Q4. The sample is restricted to avoid estimating the effect between the period before GATT and the period after.
The dashed and continuous lines represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors
are two-way clustered by firms and quarter.

4.1.1 Results

Figure 6 displays my individual firm results. The findings reveal a significant role of liquidity, both

in terms of its magnitude and the associated confidence interval, in determining the dispersion in

innovation responses to monetary policy shock. After a one standard deviation expansionary shock,

one standard deviation more of liquidity leads to roughly 0.6 percentage points more innovation.

The peak of the differences in liquidity occurs after 5 years.

The point estimates in the figure are statistically significant. To assess their economic signifi-

cance, I initially examine the distribution of patent applications. Overall, the distribution is skewed,

with a median growth rate of 0% and a mean growth rate of 2.1%. The heterogeneity associated

with liquidity levels, amounting to 0.6, is not only statistically significant but also holds economic

importance. An alternative method to assess the economic significance of this effect involves

comparing the coefficient of an interaction term with the main effect, following the approach of

Ottonello and Winberry (2020). However, estimating the impact of a monetary policy shock on
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innovation in the main specification is infeasible due to the sector-by-time fixed effects. Conse-

quently, I relax specification 4 by excluding sector-by-time fixed effects. Instead, I incorporate a

sector-by-seasonal-quarter effect and a macroeconomic control vector, encompassing lagged GDP

growth, inflation rate, and unemployment rate, as proposed by Ottonello and Winberry (2020). The

outcome is presented in Figure 7.

Figure 7: Heterogeneous response with average effects
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using spec-
ification 4. However, I exclude sector-by-time fixed effects αst . Instead, I include εm

t and lagged GDP growth, inflation, and
unemployment rates. The left panel plots the dynamics of the interaction term between firm control variables and the monetary
policy shock. The right panel plots the main effect of the monetary policy shock, the coefficient on εm

t . The innovation metric is
measured using the number of patent filings. The monetary policy shock is from Bauer and Swanson (2022) and the sample period
spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted
to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent
confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are two-way clustered by firms and quarter.

The coefficient of the monetary policy shock can be interpreted as the effect of a monetary

policy shock on innovation in firms with zero cash holdings. Adding the main effect does not

significantly change my main findings: expansionary monetary policy shocks stimulate innovation

in firms with high liquidity. The effect of the interaction term is comparable to the main effect.

This again confirms that the coefficient of the interaction term is economically significant.

4.1.2 Robustness

The observation that the elasticity of innovation in response to an expansionary monetary policy

shock increases with the level of liquidity remains consistent even when employing different mea-

sures of the monetary policy shock. I test the robustness by changing the definition of innovation

metric, shock measures, and sample period. The results are in Appendix A.2.

Despite the acknowledged limitations in the reliability of R&D spending data from Compustat,

I incorporate the R&D expenditures for each firm to formulate intangible capital estimates. An is-
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sue encountered when transforming a series of R&D flow variables into an intangible capital stock

is the absence of information about the initial stock level. I address this challenge by assuming that

the initial intangible stock in the first firm-quarter observation is equivalent to the R&D expendi-

tures divided by the sum of the depreciation rate and an annual growth rate of 8%, as indicated

by the pre-sample growth rate of new R&D expenditures, following the approach outlined in Hall

(1990).

Following Ottonello and Winberry (2020), instead of using Wi,t−1 in the specification 4, I use

(Wi,t−1 −Ei [Wi,t ]), which is financial variables after demeaning. By demeaning financial position

within firms, estimates are driven by how a given firm responds to monetary policy when it has

higher or lower liquidity. This excludes the situation where the results are driven by permanent

heterogeneity in responsiveness across firms.

One issue with specification 4 is that the estimate cannot capture how the overall innovation

response differs between firms with high-liquidity and firms with low-liquidity. To address this is-

sue, I split the sample into two groups: high-liquidity firms and low-liquidity firms. High-liquidity

firms are those with cash levels above the median at time t − 1. The results are in line with the

main analysis. The most response came from the high-liquidity group after the shock, while there

was no response in the low-liquidity group.

5 Why does a firm with liquidity innovate more after expansion-
ary monetary policy shocks?

Drawing from the insights presented in Section 3 and Section 4, I demonstrate that expansionary

monetary policy shocks lead to an increase in overall innovation, and firms exhibiting high levels

of liquidity exhibit the most pronounced responsiveness to such shocks. However, the precise

driving force behind the diversity of responses remains unclear. This variation could arise from

a variety of factors. First, I consider the asset price channel. If patents held by high-liquidity

firms experience greater appreciation compared to those held by low-liquidity firms, this could

potentially result in heterogeneous innovation responses. Second, I examine the financing channel.

If the expense associated with financing innovations is lower for high-liquidity firms, this might

also lead to heterogeneity. Both scenarios could propel innovation more significantly for firms with

ample liquidity than for their counterparts.

In this section, I present evidence to argue that the asset price channel cannot account for

the observed heterogeneity, while financing channel is crucial for understanding the variations

in reactions. Moreover, I illustrate that high-liquidity firms have an advantage in financing their

intangible investments. This advantage doesn’t stem from their superior position in the credit

market due to their liquidity but rather from their ability to readily tap into their accumulated cash
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reserves to meet the adjustment costs associated with the investment.

5.1 Asset price channel

The asset price channel underscores the close relationship between monetary policy and financial

markets. Monetary policy, by increasing asset prices and wealth, can spur economic activity. In the

context of this study, patents are considered a type of asset, and this channel may result in varying

effects on different firms. Additionally, since this paper evaluates the value of innovation based on

stock market performance, exploring this aspect is a valuable pursuit. The focus in this subsection

is not on the overall response of patent value to an expansionary shock but on the differential

responses of the patent value depending on the firm’s liquidity. The question is straightforward. Do

patents of high-liquidity firms appreciate more after expansionary monetary policy shocks? I use

the value of patents from Kogan et al. (2017) to test this hypothesis. I adopt the framework outlined

in specification 4, with a modification in the dependent variable to capture the average economic

value of new patents held by each individual firm. In certain instances, firms may patent multiple

new technologies during a given quarter t. To account for this, I compute the mean economic value

of the new patents for each firm. Once this dependent variable is constructed, I proceed with the

estimation using specification 4. For the analysis, I restrict the sample to instances where a firm

has applied for at least one patent in both periods t +h and t −1. I enforce this criterion due to the

infrequent nature of new patent applications, often leading to a situation where xt equals zero for

a significant portion of observations. Given that my focus is on discerning variations in valuation

post-shock, it is justifiable to exclude firm-quarter observations without patent applications.

Figure 8 plots the dynamics of the interaction coefficient between firms’ liquidity and monetary

shocks over time. The figure shows that there is heterogeneity in the valuation of patents–firms

with low liquidity benefit from expansionary monetary policy shocks in that their patent value

appreciated more after the shock. This suggests that the variation in innovation reactions following

the shock can be attributed to differences in financing, particularly benefiting firms with limited

liquidity as they gain from the increased economic value of innovation.

5.2 Financing channel

The evidence presented above has indicated that the diversity in innovation responses following

monetary policy shocks likely arises from cost-related factors. In this section, I will emphasize

the costs associated with innovation, particularly the cost of financing. I will do this by present-

ing empirical evidence that demonstrates how firms fund their innovation, highlighting it as the

mechanism through which expansionary shocks contribute to the variance in innovation responses.
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Figure 8: Heterogeneous response of patent value to monetary shocks
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using speci-
fication 4. The log difference of the average economic value of patent is a dependent variable. The monetary policy shock is from
Bauer and Swanson (2022) and the sample period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks
extends only up to 2007Q4. The sample is restricted to avoid estimating the effect between the period before GATT and the period
after. The dashed and continuous lines represent confidence intervals at one and 1.65 standard deviations, respectively. Standard
errors are two-way clustered by firms and quarter.

What force drives heterogeneity in financing methods among firms? Faced with unexpected

circumstances, firms have two options to finance their investments: utilizing existing cash reserves

or resorting to leverage. This involves two key factors: first, firms with ample liquidity might easily

secure more borrowing, and second, they might invest directly using their cash reserves. In this

subsection, I will argue that the volume of cash reserves is the source of financing heterogeneity

following an expansionary monetary policy shock, since it allows firms to invest directly from their

cash reserves.

5.2.1 Does a firm with liquidity borrow more?

As a first step, I use firms’ borrowing data and see how these change after the shock. I use spec-

ification 4, the exact specification that was used in the main analysis. Instead of using innovation

measures as a dependent variable, I use the log difference of the debt amount. Aside from borrow-

ing, I also check whether the firms with high liquidity can raise their investment through equity

financing. While equity financing differs from traditional credit in that it doesn’t involve borrowing

money, it is still an important aspect of a firm’s financial strategy and can be influenced by changes

in monetary policy, particularly through interest rate dynamics and overall credit market condi-

tions. Therefore, it can be considered a part of the credit channel through which monetary policy

impacts the broader economy. Previous literature have shown that equity financing is more expen-

sive than internal financing (Hennessy and Whited, 2007; Hall and Lerner, 2010). However, recent
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literature have found that stock issues are the main marginal source of R&D finance for many

firms, especially young firms (Müller and Zimmermann, 2009; Brown, Martinsson, and Petersen,

2012).22 Under this setting, Ω′
h from specification 4 now captures whether liquidity increases the

total borrowing amount after the expansionary monetary policy shock.

Figure 9: Dynamics of the differential response of borrowings to monetary shocks
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using specifi-
cation 4. The left panel uses the log difference of real debt amount, while the right panel uses the log difference of the total amount
of equity issuance as a dependent variable. The monetary policy shock is from Bauer and Swanson (2022) and the sample period
spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted
to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent
confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are two-way clustered by firms and quarter.

Figure 9 presents the results. No matter which dependent variables are used, there is no hetero-

geneity in firms’ borrowing activities depending on liquidity levels, which leads to the conclusion

that the firms’ borrowing decisions are not affected by liquidity levels.

One limitation of my analysis is that I cannot identify the borrowing that is used for intangible

capital, since Compustat only provides total amount of debt and equity issuance. However, I would

like to revisit what we know about borrowings for intangible investment from previous literature.

Previous literature points out that investment in innovations differs from tangible capital in sev-

eral aspects. Several notable characteristics that distinguish intangible from tangible investment:

information asymmetry between innovator and debtor and lack of collateral value and etc. Often,

these features are cited as a reason why firms usually depend on internal financing when it comes

to R&D. Because of the “funding gap” for R&D, firms prefer using cash on hand to finance their

investments rather than relying on outside financial intermediaries.23 Moreover, the low collateral
22As the variable from Compustat is flow instead of stock, I used Net cash raised from stock issues (external equity) in period

t normalized by beginning of the period book value of total assets (AT). Net cash raised from stock issues is defined as the sale of
common and preferred stock (SSTK) minus the purchase of common and preferred stock (PRSTK).

23See Hall (2002); Brown and Petersen (2011)
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value of intangible capital leads to insufficient lending.24 On top of that, intangible capital is dif-

ficult to finance in the free marketplace given its low redeployability, non-exclusiveness, and low

liquidity, which makes acquiring new debt or equity financing more expensive for R&D compared

to traditional investments.25

Consequently, this suggests that the credit channel is less likely to account for why compa-

nies with high liquidity exhibit greater innovation than their counterparts when an expansionary

monetary policy shock takes place.

5.2.2 Does a firm with liquidity pay investment adjustment costs easily?

Since the heterogeneity in financing costs is unlikely to be solely attributed to firms’ borrowing

choices, this implies that the variation in innovation responses is linked to the fact that firms with

ample liquidity can readily tap into their accumulated cash reserves to fund their new intangible

investments, aligning with findings in the literature.

Figure 10: Correlation between (liquidity/leverage) and innovations
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Notes: This figure plots the correlation between firm characteristics and innovation using the binned scatter plot with a fitted line.
The last bin is dropped. The left panel shows the correlation between liquidity and innovation, and the right panel shows the
correlation between leverage and innovation. The innovativeness of firms is measured with patent stock divided by firms’ total
assets for normalization.

Figure 10 plots the correlation between firm characteristics and innovation using the binned

scatter with a fitted line. Firms are categorized into 25 groups based on their patent stock, and the

average liquidity of each group is computed. To avoid the influence of larger firms having more

patents and cash, the patent stock is normalized by the firms’ size. Figure 10 plots the distribution

of each bin along with a fitted line. The upper left panel displays the correlation between liquidity
24Falato et al. (2020) studies how increasing intangible capital relates to a secular upward trend in U.S. corporate cash holdings.

In their mechanism, the low collateral value of intangible capital plays an important role.
25See Sun and Xiaolan (2019); Hall and Lerner (2010)
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and innovation. A positive correlation between innovation and liquidity suggests that firms tend to

rely on increased cash reserves as their innovativeness grows. However, substituting liquidity with

leverage results in contrasting trends. The right panel illustrates that innovative firms are inclined

to reduce their leverage. This finding reaffirms that financing R&D poses high costs, making it

less likely for firms to resort to leverage as a means to fund their R&D. Consequently, borrowing

is unlikely to explain the fluctuations in intangible investment subsequent to the shock. Therefore,

the standard amplification mechanism where monetary policy affects asset collateral values and

financial constraints is muted.

I now show that innovative firms holding cash is to pay adjustment costs, since intangible capi-

tal cannot be backed by outside financing. The role of liquidity in innovation is clear when compa-

nies can’t obtain loans and are required to cover sizable adjustment expenses to drive innovation,

especially when these costs are significant. High adjustment costs of intangible capital makes firm

with high liquidity more likely to innovate than others. Following Döttling and Ratnovski (2021),

I use a firm-level measure of asset redeployability and reliance on high-skilled human capital as a

proxy for investment adjustment costs. A measure of asset redeployability is from Kim and Kung

(2017). This measure reflects the investment adjustment costs as firms with redeployable assets

can easily liquidate their capital. Hence, firms with high redeployable assets are likely to face low

adjustment costs and vice versa. One issue with this measure is that this asset redeployability score

may not reflect the adjustment costs of intangible capital. To supplement this issue, I also consider

the high-skill labor share in a firm. Innovation is often carried out by a workforce that possesses

advanced skills, as indicated by Sun and Xiaolan (2019). This implies that adjusting intangible

investment is costly and takes time, as it is difficult to hire and fire talent. I compile industry-level

data on the dependence on human capital by utilizing information obtained from the NBER-CES

Manufacturing Industry Database.26

The figure presented in the left panel of Figure 11 illustrates a negative correlation between

firm innovativeness and the redeployability of their assets. This suggests that, as firms increasingly

rely on intangible capital, their assets tend to be more specific to the firm itself. Conversely, the

right panel displays a positive correlation between firm innovativeness and their dependence on

human capital. Both panels suggest that innovation is associated with significant adjustment costs.

However, this paper focuses on how firms’ decisions change after monetary policy shocks. In

this context, understanding how firms’ marginal financing decisions shift after the shock becomes

more pertinent. To test if adjustment cost plays important role in understanding heterogeneity in

innovation responses arising from the level of liquidity, I run the regression
26The reliance on high-skilled human capital is defined as the income share of high-skill labor scaled by value added, with the

income of high-skilled human capital is defined as total payroll net of production workers’ wages following previous literature (See
Pierce and Schott (2016); Döttling and Ratnovski (2021)).

28



Figure 11: Correlation between adjustment costs and innovations
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Notes: This figure plots the correlation between firm’s adjustment costs and innovation using the binned scatter plot with a fitted
line. The last bin is dropped. The left panel shows the correlation between adjustment costs measured with the asset reployability
from Kim and Kung (2017) and innovation. The asset redeployability score reflects usability of assets within and across industries.
A high asset redeployability score implies low adjustment costs. The right panel shows the correlation between adjustment costs
measured with the reliance on high-skilled human capital and innovation. High reliance on high-skilled human capital implies high
adjustment costs. The innovativeness of firms is measured with patent stock divided by firms’ total assets for normalization.
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where L jt−1 denotes the liquidity of firms and A j denotes the adjustment costs.27 The idea is that

that firms with low liquidity and minimal adjustment costs can innovate without much difficulty

following an expansionary monetary policy shock, even when facing liquidity constraints. In con-

trast, companies with low liquidity and high adjustment costs are restricted by liquidity constraints

since the expenses for adjustments must be covered internally, as highlighted in the above sec-

tion. The primary parameter is represented by βh. This parameter quantifies the influence of firms’

adjustment costs on the impact of liquidity regarding an expansionary monetary policy shock.

Figure 12 displays my results. I modified the asset redeployability score by multiplying it by

-1, with the intention of making it easier to understand that higher scores correspond to increased

adjustment costs. The results, irrespective of the proxy used, underscore the significant role of

liquidity when adjustment costs are large. For firms with adjustment costs one standard deviation

higher, the impact of liquidity on the response to an expansionary monetary policy shock increases

by 0.6 percentage points. Given that the coefficient of the interaction term between monetary policy
27L jt−1 is included in W jt−1
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Figure 12: Heterogeneous response of innovation to monetary policy shocks
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity, a proxy for adjustment costs, and monetary
policy shocks, using specification 4. The innovation metric is computed from the number of patent filings. The monetary policy
shock is from Bauer and Swanson (2022) and the sample period spans from 1988Q1 to 2011Q4, while the analysis of monetary
policy shocks extends only up to 2007Q4. The sample is restricted to avoid estimating the effect between the period before
GATT and the period after. The dashed and continuous lines represent confidence intervals at one and 1.65 standard deviations,
respectively. Standard errors are two-way clustered by firms and quarter.

and liquidity is approximately 0.6, this figure holds substantial significance. I also conducted

analysis using specification 4 on sub-groups, one with adjustment costs above the median and

one with costs below. Figure A.19 shows the heterogeneous response of innovation stemming

from liquidity following expansionary monetary policy shocks within each adjustment costs group,

using the redeployability score as a measure. Similarly, Figure A.20 examines this response based

on reliance on high-skilled human capital. The results show that after expansionary monetary

policy shocks, high liquidity firms innovate more than low liquidity firms only when firms face

high adjustment costs. These findings suggest that the heterogeneous response predominantly

occurs within the high adjustment cost group, implying that cash reserves are likely being utilized

to fund innovation, especially with regard to adjustment costs.

6 Conclusion

Innovation has profound effects on the macroeconomic environment. One of the major benefits of

innovation is its contribution to economic growth. This implies that it affects the central bank’s

ability to achieve its mandate, price stability, and maximum employment. In this regard, under-

standing the mechanism of the transmission of monetary policy shocks to innovation is important

for policymakers to make decisions about the interest rate to overcome any output hysteresis. In

this paper, I use the entire history of U.S. patent data to construct a new measure of innovation
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to assess the productivity effect of monetary policy shocks. I can answer several questions that

haven’t been clarified due to the limited data availability. Empirically, I document how large the

effect of monetary policy shocks on the pricing of new technology is, which explains why we see

economically and statistically sizable responses of innovation after expansionary monetary policy

shocks. Moreover, I provide new findings on the differential effect of monetary policy shocks

on firms’ innovation depending on their financial status. This behavior is driven by firms with

high liquidity due to their ability to access accumulated cash reserves. In response to an expan-

sionary monetary policy shock, the price of innovation increases, which incentivizes all firms to

invest more in intangible capital. However, firms with less liquidity cannot freely choose their op-

timal level of investment because they have limited access to cash reserves and the credit market.

These findings have two important implications for policymakers. The first is that monetary policy

can have a persistent impact on real outcomes through innovation, which supports monetary non-

neutrality. The second is that the response of innovation to monetary shocks may be magnified

over time, as public corporations in the US have steadily increased their cash holdings over the last

decades.
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A Additional results

A.1 Additional sources of heterogeneity
The key insight from the preceding analysis is the presence of divergence in innovation responses
contingent upon firm characteristics. Additionally, firms characterized by high liquidity display the
most pronounced reactivity to shocks, as they exhibit substantial growth in innovation subsequent
to an expansionary monetary policy shock. This emphasizes the important role that liquidity plays
in explaining such variability. In this section, I would provide other firm characteristics which
contribute to the dispersion in innovation responses. Figure A.1 shows the result.

First, it’s worth noting the significance of leverage. The question of whether firms are finan-
cially constrained is considered an essential factor in determining their investment choices (Ot-
tonello and Winberry, 2020; Hori, 2020). In the primary analysis, I also incorporate leverage, as
it commonly serves as a proxy for the extent of such constraints. Using the baseline measure, the
estimated coefficient of the interaction term between the shock and leverage is both substantial and
statistically significant. The result implies that after expansionary monetary policy shock, firms
with high default risk are less responsive to monetary policy shocks. The result is similar to Ot-
tonello and Winberry (2020) which investigates the response of tangible investment depending on
the financial health after monetary policy shocks.

Next, age also seems important factor in determining the responses of innovation. The result
shows that old firms are less innovative after the shock. This is also in line with the literature
(Huergo and Jaumandreu, 2004). In addition, Durante, Ferrando, and Vermeulen (2022) points out
that young firms are more sensitive to monetary policy shocks in terms of tangible investments. In
this sense, the age of firms works in the same direction as young firms are more sensitive than old
firms in terms of their innovation as well.

Moreover, the size of firms matter. The figure shows that larger firms are more responsive than
small firms. This is opposite to previous literature (Gertler and Gilchrist, 1994) which show that
small firms are tend to more sensitive to changes in the interest rate.

However, these outcomes were not robust when using alternative measure of innovation which
lead to less precise coefficient estimates.

I also examine the relevance of industry-specific factors. As depicted in Figure A.2, it becomes
evident that manufacturing firms exhibit more pronounced innovation responses following expan-
sionary monetary policy shocks. Figure A.2 further illustrates that, on average, manufacturing
firms possess a greater number of patents compared to firms in other sectors. When we combine
these two observations, the findings suggest that the manufacturing sector plays a significant role
in driving the aggregate innovation responses following such shocks.
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Figure A.1: Heterogeneous response of innovation to monetary policy shocks
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Notes: This figure displays the dynamics of the interaction coefficient between firm characteristics and monetary policy shocks.
The monetary policy shock is from Bauer and Swanson (2022) and the sample period spans from 1988Q1 to 2011Q4, while the
analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid estimating the effect between the
period before GATT and the period after. The dashed and continuous lines represent confidence intervals at one and 1.65 standard
deviations, respectively.
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Figure A.2: Impulse response function of innovation to monetary shock by groups
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Notes: This figure displays the impulse responses of the innovation metric to a negative, one standard deviation monetary policy
shock for each industry group. The monetary policy shock is from Bauer and Swanson (2022) and the sample period spans from
1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid
estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence
intervals at one and 1.65 standard deviations, respectively. Those with liquidity above the median are defined as high-liquidity firms
and the rest are defined as low-liquidity firms.
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Figure A.3: Average number of patents by each industry
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Notes: This figure plots the average number of patent applications by each industry using SIC 1 digit.
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A.2 Robustness check

Figure A.4: Responses of innovation to monetary policy shock with various innovation metrics
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Notes: This figure displays the impulse responses of different aggregate innovation metrics to a negative, one standard deviation
monetary policy shock using specification 3. The monetary policy shock is from Bauer and Swanson (2022) and the sample period
spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted
to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent
confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998) to allow
for arbitrary serial and cross-sectional across horizons and time.
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Figure A.5: Responses of innovation to monetary policy shock with different monetary policy shocks
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Notes: This figure displays the impulse responses of the innovation metrics to a negative, one standard deviation monetary policy
shock using specification 3. The monetary policy shock is from Barakchian and Crowe (2013) and the sample period spans from
1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid
estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence
intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998) to allow for arbitrary
serial and cross-sectional across horizons and time.

Figure A.6: Responses of innovation to monetary policy shock with different monetary policy shocks
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Notes: This figure displays the impulse responses of the innovation metrics to a negative, one standard deviation monetary policy
shock using specification 3. The monetary policy shock is from Gertler and Karadi (2015) and the sample period spans from
1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid
estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence
intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998) to allow for arbitrary
serial and cross-sectional across horizons and time.
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Figure A.7: Responses of innovation to monetary policy shock with different monetary policy shocks
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Notes: This figure displays the impulse responses of the innovation metrics to a negative, one standard deviation monetary policy
shock using specification 3. The monetary policy shock is from Gorodnichenko and Weber (2016) and the sample period spans
from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid
estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence
intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998) to allow for arbitrary
serial and cross-sectional across horizons and time.

Figure A.8: Responses of innovation to monetary policy shock across varied time periods
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Notes: This figure displays the impulse responses of the innovation metrics to a negative, one standard deviation monetary policy
shock using specification 3. The monetary policy shock is from Bauer and Swanson (2022) and the sample period starts from
1995Q2 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid
estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence
intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998) to allow for arbitrary
serial and cross-sectional across horizons and time.
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Figure A.9: Responses of innovation to monetary policy shock across varied time periods
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Notes: This figure displays the impulse responses of the innovation metrics to a negative, one standard deviation monetary policy
shock using specification 3. The monetary policy shock is from Bauer and Swanson (2022) and the sample period spans from
1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends up to 2011Q4. The sample is restricted to avoid estimating
the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence intervals at
one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998) to allow for arbitrary serial and
cross-sectional across horizons and time.

Figure A.10: Responses of innovation to monetary policy shock with varied controls
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Notes: This figure displays the impulse responses of the innovation metrics to a negative, one standard deviation monetary policy
shock using specification 3 with J = 4 and I = 4. The monetary policy shock is from Bauer and Swanson (2022) and the sample
period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is
restricted to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous lines
represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998)
to allow for arbitrary serial and cross-sectional across horizons and time.
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Figure A.11: Responses of innovation to monetary policy shock with varied controls
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Notes: This figure displays the impulse responses of the innovation metrics to a negative, one standard deviation monetary policy
shock using specification 3 with J = 8 and I = 8. The monetary policy shock is from Bauer and Swanson (2022) and the sample
period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is
restricted to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous lines
represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998)
to allow for arbitrary serial and cross-sectional across horizons and time.

Figure A.12: Responses of innovation to monetary policy shock with continuous depreciation
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Notes: This figure displays the impulse responses of the innovation metrics, using patent stock constructed with continuous depre-
ciation of patents, to a negative, one standard deviation monetary policy shock using specification 3. The monetary policy shock
is from Bauer and Swanson (2022) and the sample period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy
shocks extends only up to 2007Q4. The sample is restricted to avoid estimating the effect between the period before GATT and
the period after. The dashed and continuous lines represent confidence intervals at one and 1.65 standard deviations, respectively.
Standard errors are as in Driscoll and Kraay (1998) to allow for arbitrary serial and cross-sectional across horizons and time.
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Figure A.13: Heterogeneous response of innovation to monetary policy shocks with various innovation
metrics
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks across various
innovation metrics, using the specification 4. The monetary policy shock is from Bauer and Swanson (2022) and the sample period
spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted
to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent
confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are two-way clustered by firms and quarter.
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Figure A.14: Heterogeneous response of innovation to monetary policy shocks with different monetary
policy shocks
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using the
specification 4. The monetary policy shock is from Gorodnichenko and Weber (2016), Gertler and Karadi (2015), and Barakchian
and Crowe (2013). The sample period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only
up to 2007Q4. The sample is restricted to avoid estimating the effect between the period before GATT and the period after. The
dashed and continuous lines represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are
two-way clustered by firms and quarter.
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Figure A.15: Heterogeneous response of innovation to monetary policy shocks across varied time periods
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using the
specification 4. The monetary policy shock is from Bauer and Swanson (2022). In the left panel, the sample period covers the
period from 1995Q2 to 2011Q4, with the analysis of monetary policy shocks ending at 2007Q4. In the right panel, the sample
period extends from 1988Q1 to 2011Q4, and the analysis of monetary policy shocks covers the entire period up to 2011Q4. The
sample is restricted to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous
lines represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are two-way clustered by
firms and quarter.

Figure A.16: Heterogeneous response of innovation to monetary policy shocks with demeaning variables
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, with demeaned
variables, using the specification 4. The monetary policy shock is from Bauer and Swanson (2022). The sample period spans from
1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid
estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence
intervals at one and 1.65 standard deviations, respectively. Standard errors are two-way clustered by firms and quarter.
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Figure A.17: Heterogeneous response of innovation to monetary policy shocks among firms with at least
one patent filing

0 4 8 12 16 20 24 28

Quarter

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
e

rc
e

n
ta

g
e

 p
o

in
ts

Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using the
specification 4. The monetary policy shock is from Bauer and Swanson (2022) and the sample period spans from 1988Q1 to
2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid estimating the
effect between the period before GATT and the period after, and it includes only firms with at least one patent filing. The dashed
and continuous lines represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are two-way
clustered by firms and quarter.

Figure A.18: Impulse response function of innovation to monetary shock by groups
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Notes: This figure displays the impulse responses of the innovation metric to a negative, one standard deviation monetary policy
shock for each liquidity group. The monetary policy shock is from Bauer and Swanson (2022) and the sample period spans from
1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is restricted to avoid
estimating the effect between the period before GATT and the period after. The dashed and continuous lines represent confidence
intervals at one and 1.65 standard deviations, respectively. Firms are divided into two groups depending on their level of liquidity in
the period t −1. Those with liquidity above the median are defined as high-liquidity firms and the rest are defined as low-liquidity
firms.
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Figure A.19: Heterogeneous response of innovation to monetary policy shocks
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using the
specification 4 for each adjustment costs group. The innovation metric is measured using the number of patent filings, while the
adjustment cost is proxied by the asset redeployability score. The monetary policy shock is from Bauer and Swanson (2022) and
the sample period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The
sample is restricted to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous
lines represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are two-way clustered by
firms and quarter.

Figure A.20: Heterogeneous response of innovation to monetary policy shocks
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Notes: This figure displays the dynamics of the interaction coefficient between liquidity and monetary policy shocks, using the
specification 4 for each adjustment costs group. The innovation metric is measured using the number of patent filings, while the
adjustment cost is proxied by reliance on high-skilled human capital. The monetary policy shock is from Bauer and Swanson
(2022) and the sample period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to
2007Q4. The sample is restricted to avoid estimating the effect between the period before GATT and the period after. The dashed
and continuous lines represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are two-way
clustered by firms and quarter.
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A.3 Other results

Figure A.21: Effect of patent application on TFP
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Notes: This figure plots the impulse response of TFP to changes in patent application. Specification 3 is used where x denotes TFP
and z denotes patent application. A lag order of J = 4 and an order of I = 4 are used. Standard errors are as in Driscoll and Kraay
(1998) to allow for arbitrary serial and cross-sectional across horizons and time.

Figure A.22: Correlation between innovation and intangible capital
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Notes: This figure plots the correlation between cyclical components of Patent stockt and Intangible capital stockt+ j where j = -3,
..., 3
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Figure A.23: Response of macro variables to monetary policy shocks
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Notes: This figure displays the impulse responses of aggregates to a negative, one standard deviation monetary policy shock using
specification 3. Quarterly TFP is from Fernald (2014), and monetary policy shock is from Bauer and Swanson (2022). The sample
period spans from 1988Q1 to 2011Q4, while the analysis of monetary policy shocks extends only up to 2007Q4. The sample is
restricted to avoid estimating the effect between the period before GATT and the period after. The dashed and continuous lines
represent confidence intervals at one and 1.65 standard deviations, respectively. Standard errors are as in Driscoll and Kraay (1998)
to allow for arbitrary serial and cross-sectional across horizons and time.

Figure A.24: Correlation between equity financing and innovations
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Notes: This figure plots the correlation between firms’ equity financing and innovation using the binned scatter with a fitted line.
The left panel use patent stock which is divided by firms’ total asset for normalization and the right panel use the growth rate of
patent stock as a measure of innovation.
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Figure A.25: Time-series of intangible investment, liquidity, and leverage
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Notes: This figure plots the evolution of the share of intangible investment in GDP, liquidity, and leverage. I used NIPA table to
calculate the share of intangible investment in the left panel and Compustat to calculate the average liquidity and the leverage in
given quarter in the right panel
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B Data construction

In this subsection, I provide details on the construction of the firm-level variables. I provide a list
of firm control variables as well as industry classification used in the paper.

B.1 Balance sheet data

Firm control variables

Below is the list of firm control variables used and how they are constructed in the main analysis.

Table B.1: construction of firm-level variables

Variable Construction Sources
Details From the data

Liquidity cash and short-term investment
total assets

CHEQi,t
ATQi,t

Compustat

Leverage total debt
total assets

DLCQi,t+DLTTQi,t
ATQi,t

Compustat

Age based on the incorporation date WorldScope

Size book value of assets log(ATQi,t) Compustat

EBITDA 100∗ SALEQi,t−COGSQi,t−XSGAQi,t
IPDi,t

Compustat

Tobin’s Q ATQi,t+PRCCQi,t∗CSHOQi,t−CEQi,t+TXDITCQi,t
ATQi,t

Compustat

Real sales growth 100∗∆log(100∗ SALEQi,t
IPDi,t

) Compustat

Net receivables to sales RECTQi,t−APQi,t
SALEQi,t

Compustat

Current assets over total assets ACTQi,t
ATQi,t

Compustat

Notes: This table provides details of construction of firm-level variables used in the main analysis.

Sectoral dummies

1. Agriculture, forestry, and fishing: SIC < 999

2. Mining: SIC ∈ [1000, 1499]

3. Construction: SIC ∈ [1500, 1799]

4. Manufacturing: SIC ∈ [2000, 3999]

5. Transportation, communications, electric, gas, and sanitary services: SIC ∈ [4000, 4999]
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6. Wholesale trade: SIC ∈ [5000, 5199]

7. Retail trade: SIC ∈ [5200, 5999]

8. Services: SIC ∈ [7000, 8999]

Tangible capital stock

I construct tangible capital based on the perpetual inventory method following previous literature
(Ottonello and Winberry, 2020). From Compustat, I use PPEGTQ ( Property,Plant and Equipment
(Gross)) and PPENTQ (Property, Plant and Equipment (Net))

1. Set initial capital as first observation of PPEGTQ

2. Linearly interpolate PPENTQ

3. Construct capital stock

B.2 Patent

Construct patent stock based on the number of citation

It is clear that the two different patents unlikely to have same values. However, if the innovation
measure is constructed based on the number of patents, each patent will have the same “economi-
cally” importance so that the innovation measure is not accurately constructed. That is why using
the number of patents as an instrument might not be relevant in this paper. To deal with this issue,
literature provide citations of patent as a solution. If firms invest in innovations disclosed in a
previous patent, the resulting patents presumably signify that the cited innovation is economically
valuable. In that sense, using the number of citations as a baseline measure to construct stock
of knowledge capital is appropriate. To use citation properly, I scaled the number of citation the
patent has with number of forward citations received by the patents that were applied in the same
year as patent j. Table B.2 shows why scaling is necessary.

Table B.2: How Amazon filed its patents

1995 Q1 2004 Q1
patent id citation patent id citation
05727163 486 07194419 78

07254552 31
07466875 21
07433835 39
07536322 108

486 277

Notes: This table shows how Amazon filed their patents in 1995Q1 and 2004Q2
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In 1995Q1, Amazon filed only one patent. In 2004Q1, they filed fives. In terms of number
of citation, it seems like the patent filed in 1995 outweigh those that are filed in 2004 because the
number of citation given to the patent filed in 1995 is greater than the total number of citations of
patents filed in 2004. However, one thing to note is that there are two reasons why the patent from
1995 has such high number of citations. First, the patent in 1995 might be more valuable than
others. Second, the number of citations simply reflect the fact that the patent is filed earlier. If is
the latter case, then the patents filed in earlier days naturally have higher value which should be
avoided in the purpose of the paper. To estimate the value of patents accurately, I scale the number
of citations as follows.

f j,t = ∑
k∈group of patents j,t

(
1+

Ck

C̄t

)
Ck is the number of forward citations received by the patent k. C̄t is the average number of forward
citations received by the patents that were applied at time t. Then the value of patents in 1995 is
1+ 486

32 = 16.1875 and in 2004 the value is 5+ 78+31+21+39+108
14 = 24.785 which implies that the

patents filed in 2004 is much more valuable than the one from 1995.
The rest of steps are the same as when tangible capital is constructed. To make citation-

weighted patent stocks, I have used a depreciation rate of 15% which is a standard in the literature.

x j,t = (1−δ ) · x j,t−1 + f j,t

Lastly, inverse hyperbolic sine transformation is used to use dependent variables as log change of
stock

Pj,t = log(x jt +
√

x2
jt +1)

B.3 Sample construction

Merging datasets

To address the main question, I have merged the patent data of the entire history of the U.S. and
a quarterly firm level panel of U.S. publicly traded firms. The patent data provided by USPTO
use the variable lpermno to classify firms. However, compustat uses gvkey as an identifier. In
this paper, I employ all the matching algorithm that were used to merge patent data and compustat
(Bena et al., 2017; Kogan et al., 2017; Dorn et al., 2020) to cover the period as much as possible.

Sample selection

After merging patent data and balance sheet data, I follow Ottonello and Winberry (2020) to con-
struct the sample for the main analysis. Firm-quarter observations below are excluded in the sam-
ple.

1. Firms not incorporated in the United States
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2. Firms in finance, insurance, and real estate sectors(SIC code between 6000 and 6700) and
utilities (SIC code between 4900 and 4999)

3. One of the firm characteristics is missing in the data

4. Observations before 1990Q1 or after 2011Q4

After applying these sample selection operations, we winsorize every firm-level variable at the
top and bottom 0.5% of the distribution.

B.4 Estimating the economic value of patent
To show how the value of innovation changes, I use the economic value of each patent. The method
was proposed by Kogan et al. (2017). In this section, I summarize how the value was estimated for
illustration purposes.

Estimation

This method uses firms’ stock market reaction around their new patent grant date to estimate the
economic value of each patent. Hence, it is crucial to isolate the component of stock market
movement around the patent grant date that is only related to the value of the patent. Suppose
we have a 3-day return for newly granted patent j, R j starting from the new patent grant date.
Then, this value can be decomposed into v j, which is the value of patent j, and ε j, which is the
component that is not relevant to the patent. Here the economic value of patent p j is estimated as
follows.

p j = (1− π̄)−1 1
N j

E
[
v j | R j

]
M j

M j denotes market capitalization, π̄ denotes the unconditional probability of patent application
being successful, and N j denotes the number of patents that are issued to the same firm on the
same day as patent j. The value of the patent was divided equally if a firm issued more than one
patent on the same day. Then the method adds one assumption about the distribution of r j, and ε j

that v j ∼ N+
(

0,σ2
v f t

)
and ε j ∼ N

(
0,σ2

ε f t

)
. Then we can rewrite the value v j as follows.

E
[
v j | R j

]
= δ f tR j +

√
δ f tσε f t

φ

(
−
√

δ f t
R j

σε f t

)
1−Φ

(
−
√

δ f t
R j

σε f t

)
where δ f t =

σ2
v f t

σ2
v f t+σ2

ε f t
. Kogan et al. (2017) further assume that this value is constant, meaning that

σ2
v f t and σ2

ε f t can vary across time and firms but with a fixed ratio. Then the constant δ f t was
estimated based on the regression below.

log
(
R f d
)2

= γI f d + cZ f d +u f d,
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R f d denotes the idiosyncratic return of firm f starting on day d, I f d denotes whether a new patent
was granted, and Z f d denotes other control variables. Then δ f t can be estimated based on γ .

57


	TITLE HERE
	Introduction
	Data
	Patent Dataset
	Innovation Metric
	Value of patent
	Characteristics of Innovation Metric

	Other data
	Monetary policy shocks
	Balance sheet data


	Aggregate Analysis
	The Effects of Monetary Policy Shocks on Innovation
	Results
	Robustness

	Why does the average economic value of patents increase?
	How Important is the contribution of monetary policy shocks to Innovation?

	Firm-level Analysis
	Heterogeneous Innovation Responses
	Results
	Robustness


	Why does a firm with liquidity innovate more after expansionary monetary policy shocks?
	Asset price channel
	Financing channel
	Does a firm with liquidity borrow more?
	Does a firm with liquidity pay investment adjustment costs easily?


	Conclusion
	Additional results
	Additional sources of heterogeneity
	Robustness check
	Other results

	Data construction
	Balance sheet data
	Patent
	Sample construction
	Estimating the economic value of patent



